Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comp Immunol Microbiol Infect Dis ; 90-91: 101888, 2022.
Article in English | MEDLINE | ID: covidwho-2252073

ABSTRACT

Scrub typhus is an under diagnosed re-emerging vector borne disease caused by an intracellular gram negative bacteria, Orientia. The disease is commonly prevalent in rural and hilly areas of Tsutsugumashi triangle. The diagnosis of the disease is very challenging due to similarity of its early symptoms with other febrile illnesses, like dengue and COVID 19, as well as non-availability of rapid, reliable and cost-effective methods. Moreover, the diverse clinical presentation in severe cases make it significant health problem. The occupational and behavioral risks responsible for the transmission lead to urgent need of vaccine development against the disease. The complete knowledge about its pathogenesis and the interaction with host's immune cells may help the scientists in developing the appropriate diagnostic methods as well as the vaccines.


Subject(s)
COVID-19 , Neglected Diseases , Orientia tsutsugamushi , Scrub Typhus , Vaccines , Animals , Scrub Typhus/diagnosis , Scrub Typhus/epidemiology , Scrub Typhus/veterinary , COVID-19/veterinary , Neglected Diseases/diagnosis , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Neglected Diseases/veterinary
2.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects , COVID-19 Drug Treatment
3.
Bull Natl Res Cent ; 44(1): 193, 2020.
Article in English | MEDLINE | ID: covidwho-940753

ABSTRACT

BACKGROUND: COVID-19, a pandemic declared by WHO, has infected about 39.5 million and killed about 1.1 million people throughout the world. There is the urgent need of more studies to identify the novel drug targets and the drug candidates against it to handle the situation. MAIN BODY: To virtually screen various drugs against SARS-CoV-2, the scientists need the detail information about the various drug targets identified till date. The present review provides the information about almost all the drug targets, including structural and non-structural proteins of virus as well as host cell surface receptors, that can be used for virtual screening of drugs. Moreover, this review also focuses on the different network analysis tools that have been used for the identification of new drug targets and candidate repurposable drugs against SARS-CoV-2. CONCLUSION: This review provides important insights of various drug targets and the network analysis tools to young bioinformaticians and will help in creating pace to the drug repurposing strategy for COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL